非線形現象のしなやかな計算機援用解析に関する研究
【研究分野】情報通信工学
【研究キーワード】
不確定性 / ファジィ写像 / 不動点定理 / 回路系の非線形問題 / 区間演算 / 精度保証付き数値計算 / カオス / 分岐現象 / 非線形システム / 非線形回路 / 区間解析 / オブジェクト指向ソフトウェア
【研究成果の概要】
研究期間の前半においては、基礎理論の確立と計算機援用ソフトウェアの構成要素の作成を目標として進められ、研究計画通りの進展が見られた。具体的には、
(1)非線形解析の基礎となる不動点定理について、系の不確定性をモデル化したファジィ写像の不動点定理を示した。
(2)非線形常微分方程式の境界値問題や一般的な非線形作用素方程式の解の数値的な存在検証に適した理論を構築した。これは、Newton法の収束定理を計算機により自動的に検証する方法である。
(3)C++言語及び有理数演算を実行できるオブジェクト指向言語をもとに、区間演算、自動微分、関数展開などに付随する様々なオブジェクトを柔軟に扱い得るオブジェクト指向ソフトウェアのプロトタイプ3種類構築した。このソフトウェアにおいて、非線形計算解機解析用のソフトウェアライブラリの作成を進めた。
(4)分岐現象の数値的検証が可能となるような方程式系を拡張することによって、特異点を解消するための理論の構築を進めた。また、構築した理論をサドル-ノード分岐、Hopf分岐、対称性破壊分岐などに適用し、実際にこれらの分岐現象の存在が数値的に検証可能なことを示した。(5)ホモクリニック軌道、ヘテロクリニック軌道の存在を数値的に検証するための一般理論を展開し、実際にホモクリニック分岐の存在検証を、適当な例に対して行った。
(6)有限次元方程式の有界領域の全ての解の存在を数値的に証明するためのアルゴリズムを作成し、適当な条件下でその有限時間停止性を示した。
(7)VLSI回路の方程式などセパラブル性を持つ方程式に対し、上記のアルゴリズムを高速化するための手法を開発した。これは、解の存在しない領域を線形計画法を有効に援用して、高速に見出す方法に基づく。
研究期間の後半においては、前半に確立した理論を、作成した非線形計算解析用のソフトウェアのプロタイプに組み込み、総合化、洗練化することによりしなやかな非線形計算援用解析ソフトウェアシステム実現の組織的研究を行った。具体的には、(1)区間演算ソフトウェアの計算速度を区間演算の精度に応じて可変とし、精度が要求されない場合には超高速に、高い精度が必要な場合にも高速に計算できる方式を確立した。これと自動微分など各種オブジェクトに対する演算時間の高速化をはかり、プロトタイプソフトウェアの高速化及び柔軟化を達成した。
(2)前半に確立した精度保証付き数値計算技法をプロトタイプソフトウェア上で実現し、各種の具体的な非線形関数方程式に適用して実現性を向上させつつ、有用性を検証した。特に、分岐現象の計算機解析を回路系、化学系の非線形方程式に適用して研究を進めた。
(3)精度がそれほど要求されない場合の手法と高精度解法を融合し、与えられた精度に応じて、その精度の解を高速に求める手法を確立した。また、その手法をプロトタイプソフトウェア上で実現し、回路方程式を例にとってその解の高速求解が達成されることを検証した。
(4)以上のような組織的研究を総合して、改めて問題の変更や精度の変更などに柔軟に対応できるしなやかな非線形計算機援用ソフトウェアのプロタイプを作成し、その有用性を回路系の非線形問題に適用して検証した。
【研究代表者】